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Influence of the Oscillator Equivalent Circuit on the
Stable Modes of Parallel-Coupled Oscillators

Heng-Chia Chang, Eric S. Shapimdember, IEEE,and Robert A. YorkMember, IEEE

Abstract—This paper addresses a deficiency in the authors’
previous work on coupled-oscillator theory, involving the nature ¥
of the resonance in the oscillator equivalent circuit and its Osc #1 Vi
influence on the stable modes of the coupled-oscillator system.
The authors show that series and parallel oscillators with iden- Yosc1 Y
tical free-running characteristics nevertheless behave differently ——— 'E ~
when coupled by the same coupling network. The analysis fo- | .. 4 ‘}2 2 38
cuses on parallel-coupling networks, which are most practical = z g
at microwave frequencies, and specifically on nearest-neighbor Yoro2 Y @ E
coupling topologies. The theory is verified using four small active- ose L2 E- &
patch arrays operating at 10 GHz. & z

Index Terms—Broadside pattern, coupling phase, endfire pat- o—

; ! . R a—
tern_, oscillator model, parallel coupled, parallel oscillator, series Osc #N Vy Vy R,
oscillator. j{ f "_’ 5_{:
Y ose,N YL, N YL,N
|. INTRODUCTION (@) (b)

ATIAL combining techniques can be used to comblnlg _ .
d i ded . (&) N-oscillator system coupled through an arbitrakyport net-
icrowave and millimeter-wave sources, provide tr\ﬁork described byt -parameters. (b) A common nearest-neighbor coupling
array elements are mutually coherent. Mutual injection-lockingtwork, which connects the oscillators in parallel, and allows the coupling

techniques are one possible method for achieving synchronéti@gth and coupling phase to be easily manipulated.
operation of the array elements. An attractive feature of

injection-locking techniques is the ability to manipulate thgase. The analysis focuses specifically on a simple nearest-

phase distribution without additional phase-shifting circuitrynejghbor coupling topology used in previous analytical and
The dynamics of such arrays and application to beagyperimental work [5]. The theory is verified using four

scanning has been described in prior literature [1]-[8]. In [44eparate three-element MESFET oscillator array& dtand,

a series-resonator model for the oscillator was employed in {fiflich represent the four permutations of either series or

analysis, whereas [5], [8] used a parallel-resonator-equivaleiraliel equivalents and two different coupling configurations.
circuit. In both cases, the duality between series and parallel

networks was noted, and used to argue for a similarity in
the dynamics of arrays of oscillators of either type. However,
implicit in this argument was the requirement that each type of Previous analysis of coupled-oscillator systems [5] like that
oscillator requires the corresponding coupling topology, i.dn Fig. 1(a) have shown that the amplitude and phase dynamics
oscillators with series-equivalent circuits should be coupléd an N-oscillator system can be adequately modeled by the
in series, whereas parallel oscillators should be coupled fllowing set of coupled first-order differential equations:
parallel. At microwave frequencies, both series and parallel OA; o
oscillators are common, but practical coupling schemes usually o AiRe{F;(A,0)} 1)
involve connecting oscillators in parallel, since the oscillators a6, o .
typically share a common ground. ;= witm{F(4,0)}) =12 N (2

In this paper, the dynamics of parallel-coupled oscillators . ]
are examined. The individual oscillators are modeled usi¥§'ere 4, 6i, andw; are the amplitude, instantaneous phase,
either a series- or parallel-resonator circuit. Significant dlﬂ”d free-running frequency of théh oscillator, respectively,
ferences are found in the dynamics for a given coupllr@q
scheme, leading to different stable-phase distributions for each o Y s i(wi, A1)\

FA8 =~ T ) o 4+ 0]
Manuscript received December 13, 1996; revised April 25, 1997. This work a(juJ)

was supported by Hughes Research Laboratories, Malibu, CA, and the U.S. A3)
Army Research Office.

II. DYNAMICS OF PARALLEL-COUPLED OSCILLATORS

=2
|

The authors are with the Department of Electrical and Computer Engine?r- his f lati - d th he f d
ing, University of California at Santa Barbara, CA 93106 USA. n this formulation, It '? assum.e that t e_ refquency ) e-
Publisher Item Identifier S 0018-9480(97)05379-9. pendence of the coupling admittance matrix is negligible

0018-9480/97$10.001 1997 IEEE



CHANG et al: INFLUENCE OF OSCILLATOR EQUIVALENT CIRCUIT ON STABLE MODES OF PARALLEL-COUPLED OSCILLATORS 1233

compared to the oscillator circuits; i.e., the oscillator circuits

have a higheQ-factor than the coupling network. Active L |c

_A stable steady-state solution to (1) and (2), denoted as ge(‘?‘;ﬁ gy G

(A, 6), requires thatd4; /9t = 0 and 96, /0t = w for all a ‘"l

1, wherew is the (unknown) steady-state oscillation frequency l

for the system. The steady-state is, therefore, found by solving Yo(w, V1)
‘Fl("zlv é):j(w_wi)v i:1727"'7N (4) @

which represents a set @iV equations with2N' unknowns

(one of the phases is arbitrary). The stability of these solutions é\gtive C

can be investigated by perturbing the dynamic equations (1), R°(V|1VCS 3

(2) around the solutions of (4), as described in [5], [8]. The d L

analysis is now one of specifying the functidn At the ith

port, the oscillator load is given by Z(w V)

(b)

Fig. 2. Equivalent circuits of oscillator models. (a) Parallel-resonant circuit.

t (b) Series-resonant circuit.

N A
j 3(6,—6,
YL,iIZYiijJ(J ) (5)

j=1
whereY;; is the admittance matrix of the coupling network.
A simple coupling network that is appropriate for plana@nly to synchronize the frequencies via the injection-locking
oscillator circuits is shown in Fig. 1(b). When the couplingghenomenon, and results in only a slight perturbation of the
resistance is chosen such that= Z,, this network has the oscillators from the free-running configuration.
following admittance parameters [5]:

i e . A. Dynamics with Parallel-Oscillator Model
Ly t=7] . . . .
2ZO_]@L Using the parallel model of Fig. 2(a), the input admittance
Yij=q7¢" li—jl=1 of the ith oscillator near the resonant frequengy can be
27y -
0, 0 otherwise approximated as
5 0, . i=j Yosc,i & —Ga(Ai) + 520 (w — w;) 8)
Y, =3 , . .
TJ) = TQCZ 7 li—jl=1 (6) where(; is the shunt capacitance. In the free-running state,
it 0 220 otherwise the oscillator feeds a load conductance®jf as shown, so

a ()-factor can be defined for the free-running oscillator as
where3L is the electrical length of the transmission i ¢ = w, R, C;, and write

is the characteristic impedaneg,= (2— 6;; — é:n), 6;; is the

Kronecker delta function, ang, is the group delay through the Yose,i = —Ga(4i) + 7 (w—w;) (9)
transmission line. For TEM or quasi-TEM lines, = 8L /w, wWsdB

and whengL < 27, then the assumptions leading to (3) arwhere wzyp = w;/2Q is half the 3-dB bandwidth of the
satisfied ifrR;/QZy < 1 (R, = 1/Gyp) [5]. It will be oscillator tank circuit. It is assumed that the oscillators can
assumed that this constraint holds, and the followdagpling have slightly different free-running frequencies, but that the

Gr,

parametersfor future convenience defined as Q-factors and 3-dB bandwidths are all the same—to first order.
R From this, one sees that
£ = 2—Z0 and ¢ = ﬁL (7) ay;sc,i(wi) _ GL ' (10)
To proceed further, an oscillator model needs to be specified. Ogw) w3dB

In a well-designed oscillator, the oscillation frequency wilHere, a simple Van der Pol nonlinearity is assumed, which
occur in the vicinity of a reactance or susceptance null, whi¢gads to sinusoidal oscillations

is agsumed to be.well isolatgd from other null.s (spectrally) to “GaA) = —Go + Go A2 (11)
avoid mode-hopping or multifrequency operation. In a narrow

range of frequencies around such a resonance, the oscillatbere —G, is the small-signal negative conductance, and
circuit can be modeled by either a parallel- or series-resond® describes the saturation of the negative conductance.
circuit, shown in Fig. 2(a) and (b), respectively. For stabilityn the free-running state where the oscillator feeds a load
in the free-running case, the device in the parallel model muzinductance oz, the oscillation conditions allow one to
have a negativeonductancewhich decreases with increasingwrite [5]
oscillation amplitude. The device in the series model must 2/ 2
have a negativiesistancewhich decreases in magnitude with 1 - Ga(A)/Gr = _“p(l - A /az) (12)
increasing oscillation amplitude. It is assumed that the arrayiderecy; is the free-running oscillation amplitude, apgd is a
composed of such oscillators which are stable in their fredimensionless nonlinearity parameter for the parallel oscillator
running state. The coupling between the oscillators servedated toG, and G.
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Fig. 3. Schematic diagram aWV-parallel-coupled oscillators modeled by parallel-resonant circuits.

Using (5), (9), and (10), the functiof; from (3) is then Combining (3) , (5), and (19) gives
given by

N A
+ DYyl BT ) (20)
j=1 ¢

RY(A) | -1
Rr | Ra(Ay)

I =wsgn

N

A

F, = —”éiB —Ga(A)+ )Y jej(ej_ef) . (13)
j=1 ‘

n\ghich is then substituted into (1) and (2). In this case, note that

When the oscillators are only slightly perturbed from their free-

running state, the amplitudes should stay relatively close to the

Substituting (6) and (12) into (13), the array amplitude a
phase dynamics from (1) and (2) become

OA; ) . _ Ve
= waapAi [ip(1 — A2 /a?) — mie] free-running amplitudes, and, therefodéd/RL_ ~ o146,
ot ‘ where 6 represents a small number. Keeping only leading
i+l terms in this approximation gives
+ewsap »_ Ajcos(6; — 0; + ®) (14) s
j=i—1 %
om a = waasAi[ps (1 — A7 /aF) + mic]
96, i+l Aj . i+1
ot = W; — €W3dB j;l E Sln(ei - 9]' + ‘I)), — €W3dB 'Zl Aj COS(QZ‘ - 9j + @) (21)
FE J;;Z
1=1,2,---,N. (15) 90, i+l '
. 29 (g — 6.
When applied to the end elements in the array=( 1 or gr Wit cwsap Z A, sin(6; — 0; + @),
i = N), Agp = Ayy1 = 0 must be defined. These equations ]7;;1
are the same as those derived in [4], and correspond to the i=1,2---,N. (22)

array depicted in Fig. 3.
As in the previous section, for these equations to apply to the

B. Dynamics with Series-Oscillator Model end elements in the arrayly = Ay = 0 must be defined.

The dynamics for a series-oscillator model can be derivél_@is set of equations describes the coupled-oscillator system

in similar fashion. Close to the resonant frequency, the inpgl?p'Cted in Fig. 4.
impedance of the oscillator in Fig. 2(b) is given by
lll. STABLE MODES FOR® =~ nw

Comparing (14), (15) and (21), (22), one sees that they are
virtually identical in form, but differ in the sign of several
terms. This small difference can have a profound effect in
—Rq(Ai) = —Ro + Ry A? (17)  determining allowed or stable modes of the system.

In previous literature [5], it has been theoretically and

R
Zose,i & —Rq(4;) + ngjB (w—w;). (16)

A simple Van der Pol nonlinearity is again presumed

so that
5 o experimentally demonstrated that desired phase progressions
1= Ra(Ai)/Rp = —ps (1 = A7 /o) (18) can be established in nearest-neighbor coupled arrays, using
where 1, is a dimensionless nonlinearity parameter for th@oupling networks like that of Fig. 1(b), by properly detuning
series oscillator, related t&, and Ry.. the oscillator free-running frequencies prior to synchroniza-

This paper's formulation requires the inpaidmittance tion. The coupling phase also plays an important role in

and derivative with frequency evaluated at the free-runnirtgtermining the stable range of phase shifts and the frequency
frequency, which are found to be distribution required for implementation. For example, using

(15), it was showed that beam scanning around the broadside
direction can be achieved wheh = 0° with only detuning
of peripheral array elements [6], [7], with the range of stable
osc, i(wi) - _ Ry ) (19) inter-element phase shifts beingd0® < Af < 90°. Note

N gw) w3 apRG(A:) that the phase dynamics (22) for series-type oscillators with

Y;sc, z(wz) ~
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Fig. 4. Schematic diagram oW -parallel-coupled oscillators modeled by series-resonant circuits.

$ = 180° would yield exactly the same phase dynamics as tlier all ), the amplitudes are given by
parallel-type (15) with® = 0° (and vice versa). This means
that series oscillators require a significantly different couplingA‘ ~
circuit than parallel oscillators in order to produce the samé’
phase distributions. (25)

For illustrative purposes, as well as practical merit, the
focus, therefore, will be on the case whelfe~ nr—where As long ase < u, the amplitudes do not significantly deviate
n is an integer (the following analysis will be accurate fofrom the free-running values. In this case, the stability of
small deviations in coupling phase around the point= the amplitude equations, with respect to small perturbations
nm). There will also be interest in the situation involvingn either the amplitudes or the phases, will be governed
identical free-running amplitudes and a uniform phase prpredominantly by the first term in (23), which gives the same
gression, but the analysis will be kept more general wheonstraint as in the free-running cage,> 0. Therefore, at
possible. least in this limit, there is essentially no difference between
the series and parallel oscillators as far as the amplitude
dynamics are concerned, except for a difference in the sign
of the perturbation due to the coupling given by (24). For

Under the conditiongt ~ n7r wheren is an integer, the strong coupling, this argument clearly breaks down, and a more
equations governing amplitude dynamics for the two types oéreful consideration of (23) indicates that there is a critical

cx{l:l:62—7l7j[1—COS<I>COSA<7)]}7 i=1,2,---,N.

A. Amplitude Dynamics

oscillators, (14) and (21), can be written in the form value of coupling for stability, with the series-oscillator arrays
becoming unstable at a lower level of coupling strength than
1 04 = Ap(1 - A2/a?) the parallel oscillators. However, since these large coupling
w3qp Ot e strengths are accompanied by large amplitude fluctuations and
) possible multimode phenomena, they are typically avoided in
i+1 . .
+ e ;A — cos @ Z Ajcos(6; — 6,)| practice. Note glso that here, _the s,trength_ of the coupllmg
Parnl is defined relative to the oscillator's amplitude saturation
Jj;éi parameten:. Therefore, it is possible (in principle) to design
i1=1,2,---,N (23) the oscillators to permit a large coupling strength for enhanced

locking bandwidth, but still maintain the condition< y to
where the upper sign is for series oscillators and the lowainimize amplitude fluctuations and maintain stability.
sign is for parallel oscillators.
In general, simultaneous determination of stable steady- Phase Dynamics
state amplitude and phase vectors is difficult. However, in theEquations (15) and (22) may be cast into a form containing
limit of loose coupling, the amplitude and phase dynamics aRily relative phases by defining
essentially decoupled. The steady-state amplitudes can then bé

determined by a simple Poinéexpansion [9] with respect Api = 0i1 — 0;,
to the coupling strength. To first order, this procedure yields A, = Wiyl — wi, 1=1,2,---,(N-1)
which eliminates the problem of having one arbitrary phase
cau Lt S and also reduces the order of the system by one. It also
? J . .
Aimoi £ 2% 7 — cos @ Z ;COS(@‘ —0;)1 eliminates the unknown frequenay but after solving for the
17;;1 ‘ Ag¢;, one can findw from (15) or (22). Assuming identical
i=1.2..... N (24) free-running amplitudes andt ~ n7 wheren is an integer,

the phase equations can be written in matrix form as

For the special case of a uniform phase progression and d

ror t . . LA = AP+ Awy cos D A5 26
identical free-running amplitudes\g = 6;; —6; anda; = « dt ¢ f Wm COS y (26)
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where A¢ and Af are vectors with elementd¢; and Af;, TABLE |
Aw,y, = ews 4B and RANGES OF STABLE PHASE SHIFTS FOR DIFFERENT OSCILLATOR
mo= ’ MOoDELS AND COUPLING PHASES CONSIDERED IN THIS PAPER
2 -1 0 A ‘
-1 2 _1 Sl P Oscillator Model
- _ | sm Ay Parallel Serics
f ., -, ; S = .
-1 2 -1 N <
0 1 9 sin Adn -1 g | 0.2n -90° < A9 < 90° 90° < A9 < 270°
=
The upper sign in (26) is for series oscillators and the lowef Oén
sign is for_ parallel oscHIatprs. Sett_lng the time derivative equal = 90° < Ap < 270° 90° < AG < 90°
to zero gives an algebraic equation for the steady-state phas%
differences in terms of the oscillator free-running frequencies
5 L i'ap3 27)
S=F——— . . . . .
:FAwm cos @ in which case the eigenvalues of the stability matrix are all real

. . . = . and positive whenf cos ¢ < 0. Therefore, (31) represents the
which can be solved by inverting the mattrkand solving for ?table-phase region for series oscillators wKer: 27, and

the phases using the inverse sine function. The upper sign is o]} parallel oscillators whem = 7
series oscillators and the lower sign is for parallel oscillators..l.hese results are summarized.in Table |. Note that either

Clearly, there are no E?f‘s'ble solutions of (27) if any elemeBhase ranges, (30) or (31), are sufficient to cause the vector

of the column vectod ~Aj has a magnitude greater thanp (27) to span all of its possible values, which proves that the
Awp, |cos ©|. When there is a valid solution for the sine vectogtapility region fills the entire existence region. Furthermore,
this will correspond t@2™~! different solutions for the phase gyer this range of phases, the sine functions iare one-to-

differences, since the inverse sine function is multivalued. Thge Thus, for each set of tunings within the stability region,
correct solution is found by stability analysis. there is a unique phase vector which implies that a unique

Stability is examined by linearizing (26) around a steadytaple synchronized state exists for a given tuning vesigr
state solution. Denoting the perturbation asé gives

ig —_ M5 (28) C. Uniform Phase Progression
dt From (27), one can establish the required conditions for
where the(V — 1) x (IV — 1) stability matrix M is a uniform phase progressiofi¢ by inserting the(N¥ — 1)
B - element sine vector
M=FAwy,cos®AC (29) -
3=sinA¢(1,1,---,1) (32)
and(N —1) x (N —1) diagonal cosine matrix has been defined

as which gives the result
cos A¢y 0
= cos A¢s o Awn, SinA(f), i=landi=N -1
C= . . Afi = {0, otherwise (33)
0 cos Apn_1

This implies that a uniform phase shift is induced simply
by detuning the end elements of the array (relative to the

A stable mode requires that all the eigenvaluesZ\]jfhave . NN
. o . o . central elements) by equal amounts, and in opposite directions,
positive real parts. This will be true if the matrix is positive

o S = - . with the amount of detuning establishing the amount of the
definite [10]. The matrixA is always positive definite, and jnqyced phase shift [6], [7]. Inserting the result back into

the matrixC is also positive definite when each of the phas€45) or (22), one finds that the steady-state synchronized
lies in the range frequency is the same as the free-running frequencies of the
o o . central elements, independent of the end-element tuning, since
—90% < Adi <907, t=1,2,- (N = 1). (30)  the ends are tuned in opposite directions. To summarize, the
Since the product of two positive—definite matrices is ald§quired frequency distribution is
positive definite, the eigenvalues of the stability matrix are

. —1 e .
all real and positive when the phases lie in the above range, W[l — Awm sin Ag] ™, !f t= 1
as long asfcos® > 0. Therefore, (30) represents the stable- % = { % _ . !f 1 <i< N (34
phase region for series oscillators wher= 7, and for parallel w[l + Awp sin Ag]™, if ¢ =N.

oscillators when® = 27. _
Alternatively, the matrixC' is negative definite when each
of the phases lies in the range

The range of phase shifts which can be synthesized depends
on the oscillator model and coupling network as described in
Table I. One sees that end-fire or broadside scanning arrays
90° < A¢; < 270°, t1=1,2,---,(N=-1) (31) are possible by proper selection of these parameters.
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l Fig. 6. Simulation result of the output impedance of the oscillator with
DC blocking series-resonant circuit near the oscillating frequency. The result is generated
CHPAGHOT ey R R R by EEsof LIBRA program.

i@zﬁL:n =BL=n
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Fig. 5. Diagram illustrating the experimental three-element arrays. (a) Array—.
with one wavelength coupling transmission lig@ = 0, 2x). (b) Array with P
one-half wavelength coupling transmission li/e = ). The oscillator in the
array can be designed as series-resonant circuit or parallel-resonant circuit.

(o3

ce

IV. EXPERIMENTAL RESULTS

Admittan

The aim of this paper’'s experiments was to verify the
derived coupling stability results summarized in Table |. Four
three-element linear-coupled-oscillator arrays were built: two

K i 06 L L o L s L v b b e
arrays were constructed with a coupling phasebof 5L = 9 9.5 10 10.5 11 115 12
27 [Fig. 5(a)] and two with® = gL = = [Fig. 5(b)]. In Frequency (GHz)
each of the two cases, series- or parallel-resonator oscillatg.rs . . . . .

. . . .Fig. 7. Simulation result of the output admittance of the oscillator with
were used. The circuits were fabricated on 0-787'mm'th'ﬁgallel-resonant circuit near the oscillating frequency. The result is generated
Rogers Duroid board 588@,. = 2.2). The voltage-controlled by EEsof LIBRA program.
oscillators (VCO's) in the arrays were coupled together by 75-

§2 microstrip transmission lines, resistively loaded with tw@f the free-space wavelength at the oscillation frequency. The
12042 chip resistors, as shown in Fig. 5. The coupling phagscking ranges for the series-resonator and parallel-resonator
was manipulated by varying the length of the line. The seriegetworks were 110 and 40 MHz, respectively. In the arrays
resonator oscillators were designed to operate at a commgih ¢ = 180°, the feedpoints of the patch antenna are offset
frequency of 10.7 GHz, while the parallel-resonator oscillatofeom the center positions due to the limits imposed by the
operated at 10.5 GHz. The VCO's used NE32184A packaggglch-antenna sizes and spacing. However, measurements of
MESFET's as the active device and MA-COM 46 580 varact@he input impedance of the patch antennas with offset feed
diodes for tuning. A series model was obtained by terminatinsitions indicated that the input impedance was relatively
the source and gate terminals and feeding a load from the draifthanged within the desired oscillation frequency ranges. The
terminal; a simulation of the small-signal equivalent circuig)-factors of the oscillators was much larger than that of the
looking into the drain terminal for this circuit is shown inpatch antenna within the tuning range of the VCO, which is a
Fig. 6, clearly indicating a series resonance. Alternatively,riecessary condition for validity of the theory.
parallel model was obtained by terminating the drain and gateThe measured H-plane) radiation patterns for the four
and feeding a load from the source terminal; the small-sigriakee-element arrays are shown in Figs. 8-11. As described
simulation for this circuit is shown in Fig. 7, indicating ain Section 1lI-C, the phase progression in the array can be
parallel equivalent. In each case, over 1-GHz tuning ranghanged by detuning the free-running frequencies of both end
was obtained around the center frequencies. elements in opposite directions. It can be seen that the elements
Each VCO delivered power to a patch antenna, 11.8f series-resonator model with = 7 (Fig. 8) and those of
mm wide and 9.3-mm long, which employed a quarter-waygrallel resonators withb = 2z (Fig. 9) both resulted in
matching network to present a ZDresonant load to the oscil- scanning around the broadside position, consistent with the
lator circuit. The antenna spacidgvas 14 mm, which is about range of allowed phase shifts in Table | for this case. In

LALIN B I L B
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0
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:
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Broadside Endfire (no detuning)
—-— scan angle = +26° — - — Endfire (positive detuning)
————— scan angle = 26° - - - - - Endfire (ncgative detuning)

Fig. 8. Measured radiation pattern of three-element coupled oscillatdrig. 11. Measured radiation pattern of three-element coupled oscillators
designed as series-resonant circuits with= =. The array is locked to designed as parallel-resonant circuits with= 7. The array is locked to

the common frequency 10.7 GHz. The result shows broadside patterns #rglcommon frequency 10.5 GHz. The result shows patterns with and without
maximally scanned patterns #26°, which are close to the theory valuesdetuning, which are consistent with the theoretical allowed phases in Table I.
+30° based on the phase in Table | for this case.

V. CONCLUSION

In this paper, the dependence of the dynamics of parallel-
coupled oscillators on the equivalent circuit of the oscillator,
and the coupling phase between the elements have been
examined. The oscillator can be modeled using either a series-
or parallel-resonator circuit. Significant differences are found
in the dynamics for a given coupling scheme, leading to
different stable-phase distributions for each case. The analysis
Broadside specifically focuses on a simple nearest-neighbor coupling

— - — scan angle = +26° topology used in previous analytical and experimental liter-
----- scan angle = -25° ature [5]. The theory is verified using four separate three-
Fig. 9. Measured radiation pattern of three-element coupled oscillatg@ement MESFET oscillator arrays &tband, which represent

designed as parallel-resonant circuits with= 0, 27 The array is locked to the four permutations of either series or parallel equivalents

the common frequency 10.5 GHz. The result shows broadside patterns ; ; : :
maximally scanned patterns #26° and—25°, which are close to the theory ﬁri’fjd two different coupling configurations.

values+30° based on the phase in Table | for this case.

Relative Power (dBm)
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