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Influence of the Oscillator Equivalent Circuit on the
Stable Modes of Parallel-Coupled Oscillators
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Abstract—This paper addresses a deficiency in the authors’
previous work on coupled-oscillator theory, involving the nature
of the resonance in the oscillator equivalent circuit and its
influence on the stable modes of the coupled-oscillator system.
The authors show that series and parallel oscillators with iden-
tical free-running characteristics nevertheless behave differently
when coupled by the same coupling network. The analysis fo-
cuses on parallel-coupling networks, which are most practical
at microwave frequencies, and specifically on nearest-neighbor
coupling topologies. The theory is verified using four small active-
patch arrays operating at 10 GHz.

Index Terms—Broadside pattern, coupling phase, endfire pat-
tern, oscillator model, parallel coupled, parallel oscillator, series
oscillator.

I. INTRODUCTION

SPATIAL combining techniques can be used to combine
microwave and millimeter-wave sources, provided the

array elements are mutually coherent. Mutual injection-locking
techniques are one possible method for achieving synchronous
operation of the array elements. An attractive feature of
injection-locking techniques is the ability to manipulate the
phase distribution without additional phase-shifting circuitry.

The dynamics of such arrays and application to beam
scanning has been described in prior literature [1]–[8]. In [4],
a series-resonator model for the oscillator was employed in the
analysis, whereas [5], [8] used a parallel-resonator-equivalent
circuit. In both cases, the duality between series and parallel
networks was noted, and used to argue for a similarity in
the dynamics of arrays of oscillators of either type. However,
implicit in this argument was the requirement that each type of
oscillator requires the corresponding coupling topology, i.e.,
oscillators with series-equivalent circuits should be coupled
in series, whereas parallel oscillators should be coupled in
parallel. At microwave frequencies, both series and parallel
oscillators are common, but practical coupling schemes usually
involve connecting oscillators in parallel, since the oscillators
typically share a common ground.

In this paper, the dynamics of parallel-coupled oscillators
are examined. The individual oscillators are modeled using
either a series- or parallel-resonator circuit. Significant dif-
ferences are found in the dynamics for a given coupling
scheme, leading to different stable-phase distributions for each
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Fig. 1. (a)N -oscillator system coupled through an arbitraryN -port net-
work described byY -parameters. (b) A common nearest-neighbor coupling
network, which connects the oscillators in parallel, and allows the coupling
strength and coupling phase to be easily manipulated.

case. The analysis focuses specifically on a simple nearest-
neighbor coupling topology used in previous analytical and
experimental work [5]. The theory is verified using four
separate three-element MESFET oscillator arrays at-band,
which represent the four permutations of either series or
parallel equivalents and two different coupling configurations.

II. DYNAMICS OF PARALLEL -COUPLED OSCILLATORS

Previous analysis of coupled-oscillator systems [5] like that
in Fig. 1(a) have shown that the amplitude and phase dynamics
of an -oscillator system can be adequately modeled by the
following set of coupled first-order differential equations:

(1)

(2)

where , , and are the amplitude, instantaneous phase,
and free-running frequency of theth oscillator, respectively,
and

(3)

In this formulation, it is assumed that the frequency de-
pendence of the coupling admittance matrix is negligible
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compared to the oscillator circuits; i.e., the oscillator circuits
have a higher -factor than the coupling network.

A stable steady-state solution to (1) and (2), denoted as
, requires that and for all

, where is the (unknown) steady-state oscillation frequency
for the system. The steady-state is, therefore, found by solving

(4)

which represents a set of equations with unknowns
(one of the phases is arbitrary). The stability of these solutions
can be investigated by perturbing the dynamic equations (1),
(2) around the solutions of (4), as described in [5], [8]. The
analysis is now one of specifying the function. At the th
port, the oscillator load is given by

(5)

where is the admittance matrix of the coupling network.
A simple coupling network that is appropriate for planar
oscillator circuits is shown in Fig. 1(b). When the coupling
resistance is chosen such that , this network has the
following admittance parameters [5]:

otherwise

otherwise

(6)

where is the electrical length of the transmission line,
is the characteristic impedance, , is the
Kronecker delta function, and is the group delay through the
transmission line. For TEM or quasi-TEM lines, ,
and when , then the assumptions leading to (3) are
satisfied if [5]. It will be
assumed that this constraint holds, and the followingcoupling
parametersfor future convenience defined as

and (7)

To proceed further, an oscillator model needs to be specified.
In a well-designed oscillator, the oscillation frequency will
occur in the vicinity of a reactance or susceptance null, which
is assumed to be well isolated from other nulls (spectrally) to
avoid mode-hopping or multifrequency operation. In a narrow
range of frequencies around such a resonance, the oscillator
circuit can be modeled by either a parallel- or series-resonant
circuit, shown in Fig. 2(a) and (b), respectively. For stability
in the free-running case, the device in the parallel model must
have a negativeconductance, which decreases with increasing
oscillation amplitude. The device in the series model must
have a negativeresistance, which decreases in magnitude with
increasing oscillation amplitude. It is assumed that the array is
composed of such oscillators which are stable in their free-
running state. The coupling between the oscillators serves

(a)

(b)

Fig. 2. Equivalent circuits of oscillator models. (a) Parallel-resonant circuit.
(b) Series-resonant circuit.

only to synchronize the frequencies via the injection-locking
phenomenon, and results in only a slight perturbation of the
oscillators from the free-running configuration.

A. Dynamics with Parallel-Oscillator Model

Using the parallel model of Fig. 2(a), the input admittance
of the th oscillator near the resonant frequency can be
approximated as

(8)

where is the shunt capacitance. In the free-running state,
the oscillator feeds a load conductance of as shown, so
a -factor can be defined for the free-running oscillator as

, and write

(9)

where is half the 3-dB bandwidth of the
oscillator tank circuit. It is assumed that the oscillators can
have slightly different free-running frequencies, but that the

-factors and 3-dB bandwidths are all the same—to first order.
From this, one sees that

(10)

Here, a simple Van der Pol nonlinearity is assumed, which
leads to sinusoidal oscillations

(11)

where is the small-signal negative conductance, and
describes the saturation of the negative conductance.

In the free-running state where the oscillator feeds a load
conductance of , the oscillation conditions allow one to
write [5]

(12)

where is the free-running oscillation amplitude, and is a
dimensionless nonlinearity parameter for the parallel oscillator
related to and .
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Fig. 3. Schematic diagram ofN -parallel-coupled oscillators modeled by parallel-resonant circuits.

Using (5), (9), and (10), the function from (3) is then
given by

(13)

Substituting (6) and (12) into (13), the array amplitude and
phase dynamics from (1) and (2) become

(14)

(15)

When applied to the end elements in the array ( or
), must be defined. These equations

are the same as those derived in [4], and correspond to the
array depicted in Fig. 3.

B. Dynamics with Series-Oscillator Model

The dynamics for a series-oscillator model can be derived
in similar fashion. Close to the resonant frequency, the input
impedance of the oscillator in Fig. 2(b) is given by

(16)

A simple Van der Pol nonlinearity is again presumed

(17)

so that

(18)

where is a dimensionless nonlinearity parameter for the
series oscillator, related to and .

This paper’s formulation requires the inputadmittance
and derivative with frequency evaluated at the free-running
frequency, which are found to be

(19)

Combining (3) , (5), and (19) gives

(20)

which is then substituted into (1) and (2). In this case, note that
when the oscillators are only slightly perturbed from their free-
running state, the amplitudes should stay relatively close to the
free-running amplitudes, and, therefore, ,
where represents a small number. Keeping only leading
terms in this approximation gives

(21)

(22)

As in the previous section, for these equations to apply to the
end elements in the array, must be defined.
This set of equations describes the coupled-oscillator system
depicted in Fig. 4.

III. STABLE MODES FOR

Comparing (14), (15) and (21), (22), one sees that they are
virtually identical in form, but differ in the sign of several
terms. This small difference can have a profound effect in
determining allowed or stable modes of the system.

In previous literature [5], it has been theoretically and
experimentally demonstrated that desired phase progressions
can be established in nearest-neighbor coupled arrays, using
coupling networks like that of Fig. 1(b), by properly detuning
the oscillator free-running frequencies prior to synchroniza-
tion. The coupling phase also plays an important role in
determining the stable range of phase shifts and the frequency
distribution required for implementation. For example, using
(15), it was showed that beam scanning around the broadside
direction can be achieved when with only detuning
of peripheral array elements [6], [7], with the range of stable
inter-element phase shifts being . Note
that the phase dynamics (22) for series-type oscillators with
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Fig. 4. Schematic diagram ofN -parallel-coupled oscillators modeled by series-resonant circuits.

would yield exactly the same phase dynamics as the
parallel-type (15) with (and vice versa). This means
that series oscillators require a significantly different coupling
circuit than parallel oscillators in order to produce the same
phase distributions.

For illustrative purposes, as well as practical merit, the
focus, therefore, will be on the case where —where

is an integer (the following analysis will be accurate for
small deviations in coupling phase around the point

). There will also be interest in the situation involving
identical free-running amplitudes and a uniform phase pro-
gression, but the analysis will be kept more general when
possible.

A. Amplitude Dynamics

Under the conditions where is an integer, the
equations governing amplitude dynamics for the two types of
oscillators, (14) and (21), can be written in the form

(23)

where the upper sign is for series oscillators and the lower
sign is for parallel oscillators.

In general, simultaneous determination of stable steady-
state amplitude and phase vectors is difficult. However, in the
limit of loose coupling, the amplitude and phase dynamics are
essentially decoupled. The steady-state amplitudes can then be
determined by a simple Poincaré expansion [9] with respect
to the coupling strength. To first order, this procedure yields

(24)

For the special case of a uniform phase progression and
identical free-running amplitudes ( and

for all ), the amplitudes are given by

(25)

As long as , the amplitudes do not significantly deviate
from the free-running values. In this case, the stability of
the amplitude equations, with respect to small perturbations
in either the amplitudes or the phases, will be governed
predominantly by the first term in (23), which gives the same
constraint as in the free-running case, . Therefore, at
least in this limit, there is essentially no difference between
the series and parallel oscillators as far as the amplitude
dynamics are concerned, except for a difference in the sign
of the perturbation due to the coupling given by (24). For
strong coupling, this argument clearly breaks down, and a more
careful consideration of (23) indicates that there is a critical
value of coupling for stability, with the series-oscillator arrays
becoming unstable at a lower level of coupling strength than
the parallel oscillators. However, since these large coupling
strengths are accompanied by large amplitude fluctuations and
possible multimode phenomena, they are typically avoided in
practice. Note also that here, the strength of the coupling
is defined relative to the oscillator’s amplitude saturation
parameter . Therefore, it is possible (in principle) to design
the oscillators to permit a large coupling strength for enhanced
locking bandwidth, but still maintain the condition to
minimize amplitude fluctuations and maintain stability.

B. Phase Dynamics

Equations (15) and (22) may be cast into a form containing
only relative phases by defining

which eliminates the problem of having one arbitrary phase
and also reduces the order of the system by one. It also
eliminates the unknown frequency, but after solving for the

, one can find from (15) or (22). Assuming identical
free-running amplitudes and where is an integer,
the phase equations can be written in matrix form as

(26)
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where and are vectors with elements and ,
, and

...
...

... ...

The upper sign in (26) is for series oscillators and the lower
sign is for parallel oscillators. Setting the time derivative equal
to zero gives an algebraic equation for the steady-state phase
differences in terms of the oscillator free-running frequencies

(27)

which can be solved by inverting the matrixand solving for
the phases using the inverse sine function. The upper sign is for
series oscillators and the lower sign is for parallel oscillators.
Clearly, there are no possible solutions of (27) if any element

of the column vector has a magnitude greater than
. When there is a valid solution for the sine vector

this will correspond to different solutions for the phase
differences, since the inverse sine function is multivalued. The
correct solution is found by stability analysis.

Stability is examined by linearizing (26) around a steady-
state solution. Denoting the perturbation to as gives

(28)

where the stability matrix is

(29)

and diagonal cosine matrix has been defined
as

...

A stable mode requires that all the eigenvalues ofhave
positive real parts. This will be true if the matrix is positive

definite [10]. The matrix is always positive definite, and

the matrix is also positive definite when each of the phases
lies in the range

(30)

Since the product of two positive–definite matrices is also
positive definite, the eigenvalues of the stability matrix are
all real and positive when the phases lie in the above range,
as long as . Therefore, (30) represents the stable-
phase region for series oscillators when , and for parallel
oscillators when .

Alternatively, the matrix is negative definite when each
of the phases lies in the range

(31)

TABLE I
RANGES OF STABLE PHASE SHIFTS FOR DIFFERENT OSCILLATOR

MODELS AND COUPLING PHASESCONSIDERED IN THIS PAPER

in which case the eigenvalues of the stability matrix are all real
and positive when . Therefore, (31) represents the
stable-phase region for series oscillators when , and
for parallel oscillators when .

These results are summarized in Table I. Note that either
phase ranges, (30) or (31), are sufficient to cause the vector
in (27) to span all of its possible values, which proves that the
stability region fills the entire existence region. Furthermore,
over this range of phases, the sine functions inare one-to-
one. Thus, for each set of tunings within the stability region,
there is a unique phase vector which implies that a unique
stable synchronized state exists for a given tuning vector.

C. Uniform Phase Progression

From (27), one can establish the required conditions for
a uniform phase progression by inserting the
element sine vector

(32)

which gives the result

and
otherwise

(33)

This implies that a uniform phase shift is induced simply
by detuning the end elements of the array (relative to the
central elements) by equal amounts, and in opposite directions,
with the amount of detuning establishing the amount of the
induced phase shift [6], [7]. Inserting the result back into
(15) or (22), one finds that the steady-state synchronized
frequency is the same as the free-running frequencies of the
central elements, independent of the end-element tuning, since
the ends are tuned in opposite directions. To summarize, the
required frequency distribution is

if
if
if

(34)

The range of phase shifts which can be synthesized depends
on the oscillator model and coupling network as described in
Table I. One sees that end-fire or broadside scanning arrays
are possible by proper selection of these parameters.
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(a)

(b)

Fig. 5. Diagram illustrating the experimental three-element arrays. (a) Array
with one wavelength coupling transmission line(� = 0; 2�). (b) Array with
one-half wavelength coupling transmission line(� = �). The oscillator in the
array can be designed as series-resonant circuit or parallel-resonant circuit.

IV. EXPERIMENTAL RESULTS

The aim of this paper’s experiments was to verify the
derived coupling stability results summarized in Table I. Four
three-element linear-coupled-oscillator arrays were built: two
arrays were constructed with a coupling phase of

[Fig. 5(a)] and two with [Fig. 5(b)]. In
each of the two cases, series- or parallel-resonator oscillators
were used. The circuits were fabricated on 0.787-mm-thick
Rogers Duroid board 5880 . The voltage-controlled
oscillators (VCO’s) in the arrays were coupled together by 75-

microstrip transmission lines, resistively loaded with two
120- chip resistors, as shown in Fig. 5. The coupling phase
was manipulated by varying the length of the line. The series-
resonator oscillators were designed to operate at a common
frequency of 10.7 GHz, while the parallel-resonator oscillators
operated at 10.5 GHz. The VCO’s used NE32184A packaged
MESFET’s as the active device and MA-COM 46 580 varactor
diodes for tuning. A series model was obtained by terminating
the source and gate terminals and feeding a load from the drain
terminal; a simulation of the small-signal equivalent circuit
looking into the drain terminal for this circuit is shown in
Fig. 6, clearly indicating a series resonance. Alternatively, a
parallel model was obtained by terminating the drain and gate
and feeding a load from the source terminal; the small-signal
simulation for this circuit is shown in Fig. 7, indicating a
parallel equivalent. In each case, over 1-GHz tuning range
was obtained around the center frequencies.

Each VCO delivered power to a patch antenna, 11.8-
mm wide and 9.3-mm long, which employed a quarter-wave
matching network to present a 20-resonant load to the oscil-
lator circuit. The antenna spacingwas 14 mm, which is about

Fig. 6. Simulation result of the output impedance of the oscillator with
series-resonant circuit near the oscillating frequency. The result is generated
by EEsof LIBRA program.

Fig. 7. Simulation result of the output admittance of the oscillator with
parallel-resonant circuit near the oscillating frequency. The result is generated
by EEsof LIBRA program.

half the free-space wavelength at the oscillation frequency. The
locking ranges for the series-resonator and parallel-resonator
networks were 110 and 40 MHz, respectively. In the arrays
with , the feedpoints of the patch antenna are offset
from the center positions due to the limits imposed by the
patch-antenna sizes and spacing. However, measurements of
the input impedance of the patch antennas with offset feed
positions indicated that the input impedance was relatively
unchanged within the desired oscillation frequency ranges. The

-factors of the oscillators was much larger than that of the
patch antenna within the tuning range of the VCO, which is a
necessary condition for validity of the theory.

The measured ( -plane) radiation patterns for the four
three-element arrays are shown in Figs. 8–11. As described
in Section III-C, the phase progression in the array can be
changed by detuning the free-running frequencies of both end
elements in opposite directions. It can be seen that the elements
of series-resonator model with (Fig. 8) and those of
parallel resonators with (Fig. 9) both resulted in
scanning around the broadside position, consistent with the
range of allowed phase shifts in Table I for this case. In
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Fig. 8. Measured radiation pattern of three-element coupled oscillators
designed as series-resonant circuits with� = �. The array is locked to
the common frequency 10.7 GHz. The result shows broadside patterns and
maximally scanned patterns at�26�, which are close to the theory values
�30� based on the phase in Table I for this case.

Fig. 9. Measured radiation pattern of three-element coupled oscillators
designed as parallel-resonant circuits with� = 0, 2�. The array is locked to
the common frequency 10.5 GHz. The result shows broadside patterns and
maximally scanned patterns at+26� and�25�, which are close to the theory
values�30� based on the phase in Table I for this case.

Fig. 10. Measured radiation pattern of three-element coupled oscillators
designed as series-resonant circuits with� = 0, 2�. The array is locked to
the common frequency 10.7 GHz. The result shows patterns with and without
detuning, which are consistent with the theoretical allowed phases in Table I.

Figs. 8 and 9, the measured radiation patterns for maximum
detuning are close to the theoretical value of30 [4]–[7].
The remaining arrays (Figs. 10 and 11) resulted in patterns
consistent with end-fire phasing, as expected from Table I.
(Naturally, the shape of the single-patch-plane pattern does
not allow for true end-fire patterns.) These results, therefore,
verify that it is both the resonator model and coupling phase
which determines the stable range of achievable phase shifts.

Fig. 11. Measured radiation pattern of three-element coupled oscillators
designed as parallel-resonant circuits with� = �. The array is locked to
the common frequency 10.5 GHz. The result shows patterns with and without
detuning, which are consistent with the theoretical allowed phases in Table I.

V. CONCLUSION

In this paper, the dependence of the dynamics of parallel-
coupled oscillators on the equivalent circuit of the oscillator,
and the coupling phase between the elements have been
examined. The oscillator can be modeled using either a series-
or parallel-resonator circuit. Significant differences are found
in the dynamics for a given coupling scheme, leading to
different stable-phase distributions for each case. The analysis
specifically focuses on a simple nearest-neighbor coupling
topology used in previous analytical and experimental liter-
ature [5]. The theory is verified using four separate three-
element MESFET oscillator arrays at-band, which represent
the four permutations of either series or parallel equivalents
and two different coupling configurations.
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